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Abstract—Electrocardiograph (ECG) has been well proved
to contain adequately unique patterns for individual recognition
and considered as a promising biometric which is hard to spoof
and forge because of its intrinsic liveness detection and dynamic
variance. However, unlike other conventional biometrics, the se-
curity vulnerabilities of ECG biometric systems have been largely
under-explored. For example, given the multi-faceted roles of
ECGs in both healthcare and biometrics, many large-scale ECG
databases are publicly available online, which would provide the
attackers a potential way to hack the authentication system. In
this study, we present a new presentation attack method that can
spoof the target authentication system by generating a sufficiently
large number of high-quality fake ECG samples based upon
the public datasets and limited attempt efforts. Our approach
combines the cluster-based template searching, off-line substitute
classifier training, data synthesis, and VAE-based counterfeits
generation. Considering a robust ECG authentication system
with effective replay detection mechanism that can effectively
identify and reject common noise injection attacks, experimental
results show that the fake ECG samples generated by our
approach can achieve an average acceptance rate of 95%,
compared with the best acceptance rate of 39% for noise-injected
fake samples.

I. INTRODUCTION

The past decade has seen an dramatically growing popu-
larity of biometrics in security authentication applications. Al-
though physiological (like fingerprint and iris) and behavioral
(like keystrokes and gaits) biometrics have been widely used in
people’s daily life, they still suffer from either the constraints
of ease of replication and non-cancellability, or the shortcom-
ings of higher variance and less permanence. Recently another
type of biometrics based on electrophysiological signals have
gained increasing attention. In particular, electrocardiogram
(ECG)-based biometrics become more prominent because
ECG contains sufficiently detailed information pertaining to
the highly individualized, functional and structural properties
of the heart [1]. For instance, a smart wristband named
“Nymi Band” that uses ECGs to authenticate user identity
and any conceivable device has been used for wearable credit
card payment. Prior research has also demonstrated ECG’s
superior advantages as a biometric: ECGs are present in all
living individuals and ECG signals are hard to forge and
counterfeit. More importantly, ECG signals exhibit a small
level of intrinsic dynamic variance and are not constantly
identical even for the same individual, which make it more
resistant to conventional presentation or replay attacks [2].

The security of biometric systems has been extensively
studied. As shown in Fig. 1, the authentication process could

Fig. 1. Attacks and defenses in the biometric authentication system

be compromised by the following three types of attacks [3]:

• Administration attack, also known as the insider

attack, which indicates the vulnerabilities of the ad-
ministration of the biometric system, e.g., improper
enrollment process, the collusive system administra-
tor, or an authorized user coerced by the adversary.

• Non-secure infrastructure, referring to the vulnera-
bilities of hardware and software, includes intercepted
communication channels, overridden authentication
protocols, and stolen or modified biometric templates.

• Biometric overtness, originates from the limitations
of the biometric itself and the biometric authentication
system, which allows the adversary to spoof the
biometric system by synthesizing fake samples.

From the attacker’s perspective, compared with the high-
cost administration attack, intercepting and stealing legitimate
biometric templates are easier to implement. For example,
the attacker could launch the replay attack once illegally
obtaining the accepted samples from the authorized user (e.g.,
replicating the fingerprint left on the bottle [4]) or from the
template database by eavesdropping the communication chan-
nel [5]. However, the legitimacy of input biometric samples
can be verified by the replay detector [6]. Also, to avoid
the information leakage during the communication process
and increase the revocability of biometrics, the cancelable
biometric system has been proposed [7], which means that the
system will only transmitting the modified biometric patterns
by revocable and non-invertible transformations.

Biometric authentication is normally done in an unsuper-
vised manner, which means the attacker can spoof the system
by feeding fake artificial signals into the biometric sensor [8].
However, those attacks often demand strict prerequisites. For
example, the hill-climbing attack needs the detailed matching



scores from the decision module for every fake sample at-
tempt, and the brute-force attack requires a significant amount
of computational resources and time, especially for the authen-
tication system with a low false match rate (FMR).

Although some prior research on ECG biometrics have
reached very high authentication accuracy over a large amount
of subjects’ data [1], [9], the security vulnerabilities of ECG
biometric systems have been largely under-explored. Many
existing studies have revealed the security threats of con-
ventional biometric systems by using a priori knowledge of
biometric characteristics, e.g., the attacker often first attempts
a few high frequency PIN codes in a 4-digit PIN system
[10], or uses some carefully designed “masterprints” [11]
for spoofing the fingerprint authentication system. Thus we
would like to ask the question: Do ECGs hold any common
characteristics or attributes so that there is a chance they can
match with an arbitrary user’s ECG template? Given that ECG
is the bioelectrical signal arising from the contraction of the
heart muscles, ECGs of different individuals will hold similar
cardiac patterns and some common morphological attributes.

To the best of our knowledge, our work is the first of its
kind to explore an effective spoofing mechanism against the
emerging ECG biometric authentication systems by generating
a large amount of high-quality fake ECG samples that can be
accepted by the authentication system. Our contributions are
summarized as follows:

• We examined the vulnerability and resilience of ECG
biometric systems and formulated the threat model.

• We proposed an attacking method capable of forging
unlimited fake ECG samples with high acceptance
rate and only a few attempt efforts, only based upon
publicly accessible ECG databases and the returned
authentication decisions (i.e., acceptance or rejection).

• We validated the effectiveness of the proposed spoof-
ing mechanism on an ECG authentication system with
strict replay detection and different FMRs.

II. RELATED WORK

A. Brute-Force Attacks

In biometric domain, a crude brute-force attack means that
the attacker keeps attempting the authentication system with
an accessible corresponding large biometric database. Pagnin
et al. [12] investigated brute-force attacks for different strate-
gies on recovering a matching biometric. The results showed
that these centre search attacks would imply the possibility of
compromising the existing biometric authentication protocols
based on simple distances (e.g., Hamming and Euclidean
distances). Similar studies have investigated the brute-force
attacks on Match-on-Card fingerprint [13], and palmprint [14]
verification systems.

B. Hill-Climbing Attacks

Different from the brute-force attacks, when the large
biometric database is not available or unfeasible, hill-climbing
attacks can generate synthetic biometric data based on the
feedback scores of the authentication matcher. Maiorana et
al. [15] investigated the hill-climbing attacks on a multi-
biometric recognition system including on-line signatures and
EEGs. The results showed that the hill-climbing strategies may

represent a potential threat even for the low False Acceptance
Rate (FAR) biometric system, and require less efforts than
a brute-force attack for successfully breaking the system.
Specifically, many biometric systems, including fingerprint
[13], iris [16], and signature [17], have been proved their
potential risks by performing hill-climbing attacks.

C. Noise Injection Attacks

It is known that small random perturbations with suitable
mathematical models that are introduced into a given signal
can generate a very similar imposter dataset. Ghouzali et.al.
described different attack modules including noise perturba-
tions on biometric mobile applications [18]. Another study
[19] evaluated the noise attacks on different biometrics includ-
ing signature, fingerprint, and face. White noises were injected
in given biometric templates to generate more synthetic data
and a high false acceptance rate was observed by using
the noise altered images. To address such type of noise
perturbations, Gui et al. [6] proposed a defense mechanism
based on the residual and statistical features of the authenticate
samples.

D. Generative Models

Different from the static biometric traits (e.g., fingerprint,
iris and face images), ECG is a continuous semi-periodical
bio-signal and surely brings with slight variance among every
single heartbeat of the same individual. Given this unique
dynamic and continuous nature, in the real ECG attacking
scenarios, it would be barely effective if only one or a few
samples of the genuine user are falsified and forged. Therefore,
it would be more aggressive and effective if a sufficiently
large number of (ideally infinite) fake ECG samples that are
slightly different from each other can be generated. To this
end, generative models could be potential method to generate
new samples based on the distribution over the observed data.

Currently, Generative Adversarial Network (GAN) and
Variational Autoencoder (VAE) are the two most popular
generative models. Although sharing the same rationale, they
differ in their roots and training details. VAE [20] is rooted
in probabilistic graphical models, which aims at learning the
probability distribution of the observed data by modeling
latent representation. GAN [21] alternatively trains a generator
network and a discriminator network to find a Nash equilib-
rium where the generator can create fake samples that are real
enough to fool the discriminator. Although GAN is believed
to be effective for approximating complex distributions, it
also has significant drawbacks and performance fluctuations.
Compared with VAE, the training of GAN is unstable, because
not only finding a Nash equilibrium cannot be guaranteed
through gradient descent, but also its easy to fall into a
“mode collapse” if the training of two adversarial networks
are not balanced. In addition, training an accurate enough
discriminator in GAN requires a large number of true samples,
which is usually less feasible in biometric attacking scenarios.

III. THREAT MODEL AND PROBLEM FORMULATION

A. Threat Model

For a privacy-preserving biometric authentication protocol,
the major concerns can be concluded as follows [12], [22]:



Fig. 2. Overview of the proposed attach scheme

• Biometric template attack: the adversary attempts
to access the stored biometric reference templates.

• Biometric sample attack: the adversary intends to
forge fake biometric samples that can be accepted by
the authentication system.

• Identity privacy: the adversary tries to link the
biometric of an authorized user based on references
from different applications.

• Transaction anonymity: the adversary wants to trace
the user in different authentication attempts based on
learned templates and samples.

In this paper, we primarily focus on the first two security
concerns, and formulate the following assumptions.

Assumption 1: The Target Authentication System (TAS)
allows the user to have unlimited access attempts. Most of
existing ECG biometric systems do not restrict the access
times in order to achieve satisfactory user experience [23].

Assumption 2: TAS is able to effectively defend against
the noise perturbation attacks, such as described in [6], [18].

Assumption 3: The attacker can freely access those pub-
licly available ECG biometric databases online, such as MIT-
BIH (48 subjects), PTBD (290 subjects), CYBHI (128 sub-
jects) and UofTDB (1,012 subjects).

Assumption 4: The attacker has no access to the authenti-
cation system, which means that the attacker can only obtain
the authentication decisions (Accept/Reject), instead of any
detailed matching score or intermediate gradient information.

To emulate the real-world attacks, it is more reasonable and
practical for attackers to acquire the authentication decisions
for every malicious attempt, instead of the exact matching
scores or other detailed metrics. Thus, the attack mechanisms
which require the decision scores, such as black-box [24] and
hill-climbing [15], are not considered in this paper.

B. Definitions

a) Definition 1: ECG Biometric: Let B represent the
whole space of ECG biometric information for the entire
human population. Specifically, bik denotes the ECG of a single
heartbeat k from an individual i and Bi indicates the complete
ECG recordings from the individual i.

Bi = {bi1, b
i
2, ..., b

i
k}, ∀bik ∈ B, ∀Bi ⊆ B (1)

b) Definition 2: ECG Feature Extraction: Let F be
the feature extraction method that transforms the raw ECG
recordings to some certain feature dimensions (e.g., fiducial

or non-fiducial features). uik denotes the extracted features
for every ECG recording bik and U i represents the complete
feature set for the individual i.

U i = {ui1, u
i
2, ..., u

i
k}, uik = F(bik) (2)

c) Definition 3: ECG Template Matching: Let H
represents the template extraction function, and O indicates

the template matching function. Assume b̂ is the unknown
ECG sample, and ∆ε is the tolerance threshold.

O(H(U i), b̂) =

{

> ∆ ε ⇒ Reject

≤ ∆ ε ⇒ Accept
(3)

C. Problem Formulation

a) Formulation 1: Adversarial Sample Search: The
purpose is to find a few falsely accepted samples from the
publicly available sources without intercepting or compromis-
ing the authentication system. Let B′ denotes the public ECG
datasets. G is the searching function that aims to find out the
falsely accepted ECG sample b′ in the database B′ by the
target template matching function O.

O(H(U i), b′ ← G(B′)) ≤ ∆ε, B′ ⊆ B (4)

b) Formulation 2: Adversarial Sample Synthesis:
Given the falsely accepted ECG sample b′, to continuously
break in the authentication system, let C represents the ad-
versarial sample generation function that can keep generating
fake ECG samples set b with a high acceptance rate.

O(H(U i),b ← C(b′)) ≤ ∆ε ⇒ Accept (5)

IV. PROPOSED PRESENTATION ATTACK

A. Substitute Sample Searching

Different from other biometrics such as fingerprint and
iris, ECGs originates from the bio-electric activity of the heart
muscles. Thus, besides the uniqueness from different individ-
uals, general biological structures and behavioral characteris-
tics of human hearts enable ECGs to follow some common
patterns. In addition, based on the FMRs in existing ECG
biometric research (around 5%-10% [1]), given a database
with a large population, it is possible that there are some
substitute ECG samples in the database that can be falsely
accepted by TAS.

1) Feature Extraction: To reduce the noise influences,
we apply the One Dimension Multi-Resolution Local Binary
Pattern (1DMRLBP) [25] to extract the features from each
sample (Fig. 3). The coding mechanism considers different
distances d and window sizes p. The LBP value is defined as:

BP (x(t)) =

p−1
∑

i=0

sign(x(t+ i− p− d+ 1)− x(t))2i

+ sign(x(t+ i+ d)− x(t))2i+p

(6)

sign(x) =

{

1 if x+ ε ≥ 0

0 otherwise
(7)

where ε describes the quantization error.

Fig. 4(a) represents the raw 50 ECG samples from the
same individual which are quite noisy, and Fig. 4(b) shows
the corresponding LBP features which show very high con-
sistency.



Fig. 3. Example of 1DMRLBP coding scheme at t0 (d = 4, p = 5).

(a) ECG variance of a single user (b) 1DMRLBP extracted from (a)

Fig. 4. Comparison between the variance from the raw ECGs and the
extracted 1DMRLBP features.

2) ECG Clustering: To reduce the searching space and
attempt efforts, inspired by the stratified sampling, the Hier-
archical Clustering Analysis (HCA) is used for dividing the
given public database B′ into k groups.

{B1, B2, ..., Bk} = C(B′) (8)

where Bk denotes the kth ECG cluster, C is the Hierarchical
clustering function. To better evaluate the similarity matrix
for the ECG samples and eliminate the time-series variance
caused by the changing heart rates, we use the Dynamic
Time Warping (DTW) to measure the distance between each
individual sample during the clustering. The optimization of
k will be discussed in Section V-D.

3) Bayesian Decision Based Searching: Considering the
parameter θ = {B1, B2, ...Bk} as the samples searched from
the kth cluster and the evidence X = {0, 1} as the return label
from the TAS for each sample. We have a prior p(θ) which is
the probability of choosing each cluster, and the observations
x with the likelihood p(x|θ). Based on the Bayesian theory,
the posterior probability which is the probability of acceptance
samples coming from each cluster is defined as:

p(θ|x) =
p(x|θ)p(θ)

p(x)
(9)

Similar with the dictionary guess attacks on passwords,
we first cluster ECG samples into k groups, and rank initial
searching probability {p1, p2, ...pk} for each cluster based on
the corresponding sample density. After we find the first ac-
cepted sample bmi and its corresponding cluster Bm(m ≤ k),
as the samples in the same cluster hold the relatively high
similarities, we can assume that other samples in the cluster
Bm will have a higher probability to be accepted by the TAS.
As a traditional authentication system shown in Equation 3,
the tolerance ∆ε is resulted from the self-variance for the

Fig. 5. An example of clustering based template search.

enrolled user. Instead of only choosing the cluster with the
highest probability, to ensure the diversity for the searched
substitute samples and have a better estimation of the enrolled
user’s template and ∆ε, we only increase the weight Pm for
choosing the next sample from the cluster Bm by the its
posterior probability p(Bm|x).

For example, as shown in Fig. 5, blue circles are the
samples in the public database, and blue circles with lattice
pattern are the substitute samples that can be accepted by the
TAS. Given a database with a sufficiently large population,
the samples of the enrolled user will have overlaps with our
clusters. Once we find out the substitute samples (e.g., cluster
2 and 3), the corresponding selecting probabilities for cluster
2 and 3 will increase. Thus, the probability of searching the
next substitute sample will increase compared with randomly
searching among the entire database (i.e., brute force). Finally
the enrolled user’s template will be estimated within the
yellow area. However, if we only search samples from cluster
2, the template will be restricted in the green region, which
will affect the acceptance rate for further sample synthesis.
The searching algorithm is shown in Algorithm 1.

4) Template Ranking Search: After identifying N substi-
tute samples, to further reduce the searching effort, we asked
one question: Can we find out more substitute samples based
on a few initial accepted samples without further accessing the
authentication system? According to the National Institute of
Standards and Technology (NIST) [26], fingerprint biometric
on average can achieve 1% FAR so far, which is believed to
represent the best performance in all biometrics. On the other
hand, most of existing research on ECG biometrics hasn’t
achieved an accuracy level like this [1]. Thus, we propose
a hypothesis that, given the database with a sufficiently large
population, there are at least 0.5% samples from other users
that could be misclassified and falsely accepted. To validate
this hypothesis, we evaluate the acceptance rates of the top
0.5% samples on our benchmark with 106 users, as shown in
Fig. 6. As the EER (details in Sec V-B) increases, the average
acceptance rate also increases to above 0.95.
B. Substitute Model Training

To reduce the attempt efforts and increase the acceptance
rate of our forged ECG samples in Section IV-C and IV-D,
based on the ranking samples, we train an off-line model as the
substitute of the target authentication system. Instead of using
regular neural network classifiers (e.g., Softmax), to mimic
a more strict decision boundary for the accepted samples,
the one-class SVM learning is used for the outlier detection.
Different with the SVM for binary classification, the training



Fig. 6. Acceptance rate of the initial 100 samples from the template ranking
search over 106 users with different EERs.

ALGORITHM 1: Substitute Sample Searching Algorithm

Input: {B1, B2, ..., Bk}: k clusters for the given ECG database;
N: number of needed substitute samples;
S: O: target authentication system;
i: number of search attempts;
Output: {b′1, b′2, ...b′N}: substitute ECG sample set
Set initial choosing probability P0 = {p1, p2, ...pk} for k clusters;
Start access the target authentication system;
Choose the initial sample bm1 from cluster Bm under the
probability P0;
foreach i do

if O(bmi )→ accept then
calculate P (θ|x);;
Wm = Wm(1 + P (θ|x)); //update the mth cluster weight;

Pm = Wm∑
k
j=1

Wj
; // update the choosing probability;

bki → b′n; // output the substitute sample;
end
i = i + 1;
choose the new sample bki+1 under updated cluster probability
Pi;

end

data for one-class learning all come from the same label, and
the objective function for one-class learning [27] is:

J = 0.5
∑

jk

ajakG(xj , xk) (10)

∑

aj = nν, 0 ≤ aj ≤ 1, j = 1, ..., n (11)

where G(xj , xk) is the element (j, k) of the Gram matrix
(kernel function). ν is the parameter controlling the trade-off
between the accuracy and weights. By setting an appropriate
fraction of the observations as negative scores, we can get the
optimized boundary for outlier detection. In our approach, all
the substitute samples from the template ranking are used to
train the one-class SVM.

C. Substitute Sample Synthesis

The above clustering-based template searching method
can only find limited substitute samples from the public
sources, which restricts the effectiveness and applicability of
presentation attacks especially for the authentication system
that continuously monitors the user’s ECG signals. There, it
is imperative to seek an alternative data synthesis approach
that can augment our attacking sample dataset. Louis et al.

[28] utilized the Multivariate Gaussian Distributions’ deviation
to generate more synthesized observations for the purpose
of training data argumentation. Inspired by their work, we
investigate a method to synthesize data based on Curve Fitting
Model (CFM) and Autoencoder.

a) Curve Fitting Model: By defining the order of
Gaussian distributions N (the number of peaks to fit), CFM
can be represented as:

F =
N
∑

i=1

f(xi) =

N
∑

i=1

aie
[−( x−bi

ci
)2]

(12)

where bi and ci represents the ith Gaussian distribution’s mean
and standard deviation among N Gaussian distributions. The
parameter ai can be interpreted as the weight of this i th
Gaussian distribution. To find the optimal weight ai in each
Gaussian distribution. A cost function is defined as:

J =

N
∑

i=1

|f(xi)− yi|
2

(13)

where yi denotes the target curve to be fitted, and f(xi)
represents the result of fitting. Through calculating the first
and second order derivatives of J , an optimized weight ai can
be generated for each Gaussian distribution. Our investigations
show that, by properly choosing the CFM level (e.g., 5 or 6
Gaussian distributions), we can achieve a rather high fitting
accuracy, while maintaining a certain level of randomness.

b) Autoencoder: Similar as the auto-regression model
for learning the noise variance of ECG signals [29], we design
an autoencoder to duplicate the substitute ECG samples (see
Section IV-A4) while adding the unclonable and unobtrusive
noises (error tolerance) during the reconstruction process that
can still pass the TAS. However, due to the limited training
samples, we apply CFM into the autoencoder’s training phase
to purposely randomize the reconstructed samples reflecting
the variance nature of ECG signals.

c) Synthesis based on CFM and Autoencoder: Lever-
aging the CFM and autoencoder discussed above, we choose
part of the data Xae obtained by the substitute sample
searching for training the autoencoder. The rest of data will
be used as the templates T to generate synthesized data.
For each template Ti, we contaminate the training data of
the autoencoder X ae gradually with the data generated
by the CFM under different levels. According to different
contamination ratios for the training data and the different
levels of CFM, N autoencoders are trained for just one
template Ti. It is worthy to note that, a higher N can lead
to the risk that the synthesized samples are rejected by both
TAS and replay detector, because of the decreasing variance
and rather high similarity. Our results show that, only 53%
synthesized data can pass the TAS when we set N as 20.
For a higher N value, the success rate will keep decreasing.
Although this approach can augment our attacking sample
dataset, it is far enough to supply more high quality fake
samples because of the limited capacity of the autoencoder
in representing the dynamic variance of ECG signals. To this
end, we further introduce the VAE-based generative model to
generate a sufficiently larger set of fake ECG samples, based
upon the substitute samples acquired above and the offline
authentication model generated in Section IV-B to filter out
low-quality synthetic data.



Fig. 7. Directed Graphic Model Representation of VAE

D. ECG Counterfeits Generation Using VAE

Because our goal is to generate a great number of fake
ECG samples that are very similar but not exactly the same
as the observed data (substitute and synthetic ECG samples),
VAE addresses this issue with latent variables, which can
be seen as the representation of the observed data. With a
reasonable amount of latent variables, we can find a way
to generate the desired samples. Figure 7 shows a directed
graphical model, where z denotes latent variables that can
be drawn from a prior distribution p(z) and X indicates the
observed data which have a likelihood p(X|z).

Then, the first task of VAE is to infer the distribution of
latent variables from the observed data, that is, to calculate
the posterior p(z|X). Since the posterior is intractable, it is
approximated using variational inference in VAE, so that the
true posterior p(z|X) can be modeled with a family of simpler
distributions (e.g., Gaussian) denoted as q(z|X). This process
is called recognition model, in terms of neural networks, it
can be achieved by a “encoder” network with parameters φ.
It brings in the observed data X and outputs the parameters
to the distribution q(z|X), namely the mean µ and variance
σ2 of the latent variables for each sample. Based on the
representation of z parametrized by the recognition model,
the likelihood of the data p(X|z) can be parametrized with a
generative model. A “decoder” network with parameters θ is
adopted for data reconstruction and generation.

The “encoder” and “decoder” are connected with a repa-
rameterization trick. It makes the network differentiable by
diverting the non-differentiable sampling operation on µ and σ
to a term ǫ out of the network, so that the “encoder” parameters
φ can be trained with gradient descent. The reparameterization
trick is implemented as follows:

z = µ + σǫ, ǫ ∼ N (0, 1) (14)

The neural network structure is trained by optimizing the
parameters θ and φ with a loss function given in the form of
the negative log-likelihood with a regularizer. Since we are
considering the case with i.i.d. data samples, the loss function
with regard to a single sample xi can be represented as:

L(θ,φ;xi) = −Eqφ(z|xi)[logpθ(xi|zi)]+KL(qφ(z|xi)||pθ(z))
(15)

The first term is the reconstruction loss with the expectation
taken over the latent variables z. Because the purpose is
to maximize the likelihood pθ(X|z), and the “decoder” is
supposed to generate values between 0 and 1 (due to the nor-
malization in our case), the pθ(X|z) would be a multivariate
Bernoulli [20]. The second term can be seen as a regularizer.
It is the Kullback-Leibler divergence between the approximate
posterior qφ(z|xi) and the prior pθ(z). It tells how close are
the two distributions when using q to represent p.

V. EXPERIMENTAL SETUP

A. Dataset Selection
We adopted the UofTDB ECG biometric database [9],

which has a large population size (1012 individuals), varying
body postures, physical exercises and acquisition over a long
period of time. The ECG signals in this database have a
sampling frequency of 300 Hz with a 12-bit resolution. To
guarantee the quality and stability of ECG signals, we imple-
mented the strict outliers removal algorithm designed based
on the Median Absolute Deviation [30] to filter out subjects
whose samples have large variances and maintained the data of
606 subjects. Considering the Assumption 3 in Section III, we
randomly choose 400 subjects’ data to constitute the Database
for Attack (DfA), and the rest 206 subjects’ data are used as
Database for Defense (DfD).

B. Target Authentication System

1) Verification System: Our verification system is built
based on DfD. Butterworth filter with cut-off frequencies 0.5
Hz to 40 Hz is implemented for removing baseline wander,
electromyographic (EMG) signal noise, and power-line noise.
R-peak detection is based on the Pan-Tompkins Algorithm
[31]. The heartbeats are segmented into individual beats by a
length of 200 msec before R peak and 500 msec after the R
peak. Following the instructions of the existing work [32], we
used discrete wavelet transform (5-level decomposition with
db3 setting) as feature extraction and a customized Wavelet
Distance measure (WDIST) method as classification. Each
time, only one subject is chosen as the genuine user in DfD,
all other 205 subjects are designated as the imposters. Each
genuine user has his/her own verification system. As the target
verification system, 66% of data of the genuine user is taken as
the training data to generate template of each specific user. The
data left are used as the test data for performance evaluation.
Each decision (accept or reject) is made upon the performance
of 5 beats. In this case, through calculation on these 206
verification systems for each genuine user, Equal Error Rate
(EER) has its mean at 3.5% with standard deviation at 3.13%.

2) Residual-based Replay Detector: As most of popular
biometric authentication systems based on bio-electricity sig-
nals have ability to defend against noise injection attacks, we
utilized the residual distribution features described in [6] to
design a replay detector, which showed a very high detection
rate when the injection noise has a SNR lower than 30.
For even lower level of noise injection, we also developed
a defense mechanism using the Percent Residual Difference
(PRD) metric shown below, which has been used to gauge the
similarity of ECG biometrics [32].

PRD =

√

√

√

√

∑N

i=1(s0(i)− sn(i))2
∑N

j=1(s0(i)− s̄0)2
× 100% (16)

where s0 and sn is the unknown signal and the enrolled signal
respectively.

Figure 8 presents the performance (i.e., false acceptance
rate, FAR) of white Gaussian noise injections with different
SNRs under the different replay detection mechanisms. It is
clearly seen that, our implemented TAS equipped with both
two replay detectors can successfully identify and reject all
fake samples, regardless of the level of injected noises.
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Fig. 8. Performance of Gaussian White Noise Injection on TAS with replay
detectors

TABLE I. VAE CONFIGURATION

Model Type Layer # Layer Type # of Neurons

Encoder

1 input 140

2 hidden 60

3(1) mean 10

3(2) log var 10

Decoder

4 latent z 10

5 hidden 60

6 output 140

C. VAE Configuration

For the implementation of VAE, we adopted a simple fully-
connected neural network structure — multi-layer perceptron
(MLP). The “encoder” and “decoder” each contains a single
hidden layer. The output layer of the “decoder” employs
the sigmoid activation function while all other layers adopt
rectified linear unit (ReLU). The network configuration of
our VAE model is declared in Table I. The 140-dimensional
synthetic ECG samples are normalized and fed into the
“encoder” network. Two layers with the same dimension of
10 are drawn from the “encoder”, indicating the variational
means and log values of variance. The latent representation z
is reparameterized based on the sampling from ǫ, which has
the same dimension as z, µ and σ. The “decoder” takes in the
latent variables and reconstructs some new data samples.

The whole network was trained for 100 epochs utilizing the
random mini-batches with the size of 100. After training, the
“encoder” can be disconnected and data generation would be
done by the standalone generator model without any explicit
input samples, except for the learned means and log variances.
To evaluate the performance and capacity of VAE, 5000 ECG
counterfeits were created for different genuine users.

D. Parameter Optimization

For ECG clustering, given a public ECG dataset with 400
individuals, as shown in the Algorithm 1 and Fig. 5, the num-
ber of clusters will largely influence the searching efficiency.
For example, if the number of clusters k is too large, the
clustering model will be over-fitted, and the searching effort
for finding the first accepted samples will also be significant.
On the contrary, if the k is too small, the knowledge about
the enrolled user’s templates will not be fully discovered, and
the performance will be close to the brute-force searching.
During the optimization, as the cluster numbers don’t affect
the acceptance rate for samples from template ranking, we
only evaluate the attempt times for k ranging from 4 to 128

Fig. 9. Relationship between the number of clusters k and the averaged
attempt times with different initial substitute sample numbers N for the
enrolled user with 1% EER.

Fig. 10. Trade-off between the acceptance rate of 100 substitute samples
from template ranking and the attempt times over different initial substitute
samples N ranging from 1 (red) to 20 (black). Each triangular indicates the
{accuracy,efficiency} pair for different N .

Fig. 11. System Pass Rate of Synthesized Data and VAE Output

under different numbers of initial searched substitute samples.
The result of the user with 1% EER is shown in Fig. 9,
for different N , the optimal attempt times all locate at the
convex points when k ranges from 60 to 80. By averaging
the smallest cluster numbers k for different initial searched
substitute sample numbers N , we obtain the optimal cluster
number koptimal as 68.

In addition, after setting the cluster number k as 68, to
determine the best number of initial substitute samples N , we
evaluate the performance in terms of accuracy and efficiency
over different values of N ranging from 1 to 20. As shown
in Fig. 10, the triangular with darker color means the larger
N . As the number of initial substitute samples increases,



Fig. 12. Average attempts times using template search and brute force search
over different number of accepted samples for users with 1%,3%,5% EER

the corresponding acceptance rate for 100 samples originated
from the template ranking based on those N initial substitute
samples also increases. Meanwhile, unsurprisingly it reduces
the searching efficiency by requiring more attempt times.
To achieve a balanced trade-off between the accuracy and
efficiency, we select N = 8 as the optimal number of initial
substitute samples.

To find the optimal number of training samples for VAE,
we let the 5000 generated ECG samples by VAEs with
different numbers of train ing samples (i.e., 200, 300, 500,
1000, 1500, respectively) go through TAS defined in Section
V-B. It is observed from Figure 11 that, the optimal number
of training samples for VAE (red line) is around 1000, which
can lead an average pass rate at 95.37% (TAS with EER
at 1%, 2%, 3%, 4% and 5%). Meantime, to provide more
training samples for VAE, we need to optimize the parameter
N (the number of autoencoders in Section IV-C) and thus
let the synthesized samples go through TAS. However, the
pass rate deceases dramatically with the increasing number
of synthesized samples (blue line). This demonstrates that,
the proposed substitute sample synthesis tends to generate
more similar samples with little variance so that it can only
work effectively in generating a set of synthesized samples
necessary for the training of VAE, far away from sufficient
to serve as the presentation attacks directly onto the ECG
biometric TAS.

VI. PERFORMANCE EVALUATION

A. Substitute Sample Searching

We compared our proposed searching mechanism with the
standard brute-force (BF) attacks based on the same public
database. Five different enrolled users with EER of 1%, 2%,
3%, 4%, 5% respectively are randomly selected. To present
the BF attack, we randomly and independently selected ECG
samples from the public database to access the TAS. For our
searching approach, based on the feedback from the TAS,
we updated the weight associated with each cluster to better
estimate the specific cluster that the substitute samples belong
to. According to Fig. 12, as the increase of the number of
required accepted samples, our method requires much less
attempts than the BF search. The detailed comparison results
for searching 8 accepted substitute samples are listed in Table
II. It is shown that our proposed mechanism can effectively
reduce the attempt efforts, especially for users with lower

TABLE II. COMPARISON OF AVG. ATTEMPTS FOR SEARCHING 8
ACCEPTED SUBSTITUTE SAMPLES UNDER DIFFERENT EERS

Avg. Attempts 1% EER 2% EER 3% EER 4% EER 5% EER

Template Search 312 219 132 129 107

BF Search 1158 392 222 204 185

TABLE III. ACCEPTANCE RATES

Users
Acceptance Rate for Each Step/Module

Authentication Residual Detector Replay Detector TAS

1% EER 96.34% 100% 99.82% 96.16%

2% EER 100% 100% 99.20% 99.20%

3% EER 94.82% 100% 99.94% 94.76%

4% EER 98.94% 100% 100% 98.94%

5% EER 97.20% 100% 90.50% 87.80%

EERs. It is worthy to note that those numbers are based on
acquiring 8 accepted samples, which aims at learning the full
characteristics of authentic ECGs and thus generating unlim-
ited artificial ECGs. That being said, even for the TAS with
1% EER, we can still successfully access the system within
every 40 attempts on average, which is operationally feasible
and much less than 140 attempts for brute-force attacks.
Moreover, given the fact that many commercial authentication
systems have the exponentially growing lockout time to wait
for successive failed login attempts, our proposed method
would be more feasible and efficient.

B. Performance Comparison Against Noise Injections

We compared the performance of proposed fake sample
generation against the conventional noise injection perturba-
tions. As shown in Fig. 8, the TAS with low noise and residual-
based replay detectors (red line) can successfully identify
and reject all noise-injected fake samples (i.e., FAR = 0),
regardless of the level of injected noises. Similar results were
also observed for other types of noises, including white, blue,
red, pink and violet noises.

Leveraging our proposed presentation attack methodol-
ogy describe above, 5,000 counterfeit ECG samples were
generated associated with each genuine user. In this paper,
as targeting a commercial authentication system, we only
consider the enrolled users with EER less than 5% (a high
EER rate’s authentication system could be considered unsafe
and will be easily attacked by brute force). The attacking
results of all 5 TASs are shown in Table III, which includes
the respective acceptance rates of the authentication system,
the residual detector, the replay detector, and the entire TAS.
It can be seen that, our approach can not only achieve very
high acceptance rates on the authentication system itself,
but also pass through the strict verification of the residual-
based replay detectors. Especially, the residual detector was
completely cracked by our approach with all 100% acceptance
rates. The results demonstrate that the fake ECG samples
generated using our method can fully mimic and represent the
intrinsic characteristics of authentic ECG samples, that is, a
set of sufficiently similar counterfeits containing the dynamic
variance by nature. Specifically, Figure 13 provides a more
intuitive view of the comparison between 50 generated fake
ECG samples and 50 authentic ones associated with the 1%
EER user, which indicates that the generated samples can
perfectly imitate the morphological shapes of the true data.

VII. DISCUSSION AND CONCLUSION

As the increasing popularity of bio-signal-based biomet-
rics, it becomes more necessary to investigate the poten-
tial security risks and threats on emerging biometrics given
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Fig. 13. Comparison Between Generated ECG Samples Using Our Scheme
and the True Data With Regard to 1% EER User

their unique characteristics. In this paper, we explored the
vulnerability of the ECG biometric authentication system
and proposed a black-box presentation attack relying on the
limited access efforts and feedback labels from the unknown
verification classifier. Leveraging the public databases, we first
obtained 8 accepted substitute ECG samples and selected 100
samples from the database based on the similarity ranking.
Then we synthesized more fake samples using CFM and
autoencoder to train a generative model, VAE. For each of
the 5 users with different EER levels, 5,000 counterfeit ECG
samples were generated from VAE (theoretically, infinite new
samples can be generated). The results show that the fake
samples can successfully pass through the verification of the
target authentication system and the enhanced replay detectors,
with very high acceptance rates cross all 5 genuine users. In
summary, our approach possesses a much higher success rate
than the noise injection attacks and demands much less attempt
efforts than the brute-force attacks, under the same condition.
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